CRISPR class 2蛋白的基因组编辑应用
2023-02-15
CRISPR class 2蛋白的基因组编辑应用相信之前几期的CRISPR介绍,以及上周讲了CRISPR的原理的讲解,大家对CRISPR有不少认识了吧。那么本期,介绍下CRISPR在哪些物种中进行基因组编辑工作了呢?
基于Cas9的基因编辑技术目前已经得到了广泛的应用,例如对特定基因功能的研究,疾病模型建立,以及遗传和感染性疾病治疗的研究等等1-3。
成功建立CRISPR-Cas9基因组编辑体系的宿主也在不断增加,从刚开始的细菌4,人细胞的应用5, 6,后来又拓展到酵母7、植物8, 9、线虫10、斑马鱼11,甚至是人胚胎12。
另外,如果通过引入多个sgRNA,Cas9可以同时切割多个位点。这可以应用于大规模的染色体重排13。例如,设计一对在同一染色体上靶标距离相近的sgRNA,这会引起靶标序列的删除,或者DNA片段的倒位,如果是同时靶向到不同的染色体,可能就会引起染色体的易位。这些Cas9介导的染色体重排,对构建人的疾病模型非常有用(比如癌症和一些遗传学疾病)14, 15。
在Cas12a(旧称Cpf1)蛋白发现后并证明了人细胞可基因组编辑后,越来越多的文章证明了该蛋白在不同物种中进行基因组编辑的有效性,包括细菌,植物,小鼠等16-26,并且还包括不适合利用Cas9进行基因组编辑的物种20。另外,有文章测试Cas12a在人细胞内的脱靶率明显低于Cas9,而切割效率相当27。
参考文献:
1 Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157:1262-1278.
2 Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346:1258096.
3 Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet 2015; 52:289-296.
4 Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31:233-239.
5 Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339:819-823.
6 Mali P, Yang L, Esvelt KM et al. RNA-guided human genome engineering via Cas9. Science 2013; 339:823-826.
7 DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013; 41:4336-4343.
8 Shan Q, Wang Y, Li J et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 2013; 31:686-688.
9 Li JF, Norville JE, Aach J et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 2013; 31:688-691.
10 Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 2013; 10:741-743.
11 Hwang WY, Fu Y, Reyon D et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013; 31:227-229.
12 Liang P, Xu Y, Zhang X et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & cell 2015; 6:363-372.
13 Blasco RB, Karaca E, Ambrogio C et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell reports 2014; 9:1219-1227.
14 Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 2014; 5:3728.
15 Maddalo D, Manchado E, Concepcion CP et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516:423-427.
16 Watkins-Chow DE, Varshney GK, Garrett LJ et al. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection. G3 (Bethesda) 2017; 7:719-722.
17 Zhang Y, Long C, Li H et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science advances 2017; 3:e1602814.
18 Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Mol Plant 2017; 10:1011-1013.
19 Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC. CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 2017.
20 Jiang Y, Qian F, Yang J et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 2017; 8:15179.
21 Hu X, Wang C, Liu Q, Fu Y, Wang K. Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 2017; 44:71-73.
22 Zetsche B, Heidenreich M, Mohanraju P et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 2016.
23 Xu R, Qin R, Li H et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 2016.
24 Endo A, Masafumi M, Kaya H, Toki S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 2016; 6:38169.
25 Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 2017; 8:14406.
26 Tang X, Lowder LG, Zhang T et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 2017; 3:17018.
27 Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016; 34:863-868.